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Abstract—The goals of this project are to implement a
LoRaWAN-based network of air quality sensors in Charlottesville
and to use its data to generate a comparative spatial model
of air quality before and during the COVID-19 outbreak. The
implementation of this network required the distribution of
“The Things Network” (TTN) LoRa gateways and our own
custom-made sensor Kits to volunteers distributed throughout
the city. Our sensor kits measure temperature, humidity, CO2,
and Particulate Matter (PM) 2.5 and 10, allowing us to take
measurements in line with the EPA’s air quality index as well as to
keep up with modern trends in research showing the importance
of CO2 as an air quality metric. Preliminary spatial analysis
comparing air quality before and after March 11, 2020, the day
that UVA announced all classes would move online, shows a
near universal decline in carbon dioxide levels, but inconclusive
changes in particulate matter.

Index Terms—Statistical Modeling, Environmental Systems

I. INTRODUCTION

A foundational shift is taking place in environmental mon-
itoring with the advancement of community-driven networks
and low-cost, high-accuracy sensing technologies, creating an
unprecedented opportunity to push forward the state-of-the-art
in collaborative environmental research [1]. Traditional meth-
ods for ground-level monitoring have provided high accuracy,
but low spatial resolution with high monetary costs. It has
become clear in the past decade that the most direct route to
distributed ground-level monitoring for higher spatial density
involves community-led initiatives for environmental sensing.
However, this approach comes with a few important caveats:
established approaches have had very high accuracy standards
and, in order to meet these standards, more sophisticated
methods must be used to calibrate the chosen sensors and to
correct for anomalies in their behavior. When the hardware,
software, and infrastructure are publicly available, how should
the data generated by this kind of system be governed and
for what purposes should it be used? We have attempted to
address these open questions by designing and implementing a
sensor network as a collaboration between the School of Data
Science, the Link Lab at the University of Virginia (UVA),
and Smart Cville, a local nonprofit.

Our first step was to decide on a transport protocol for our
sensor network. Our sponsors had already invested in TTN as
a means to set up a LoRa network around Charlottesville, so
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we agreed to help expand their existing network. LoRa is a
spread-spectrum modulation technique that allows low density
data to be transmitted over long distances using low power
[2], [3]. It also has the benefit of being a wireless technology
that is suitable for low-energy applications without the need
of a license. TTN is a community-based provider of LoRa
technologies and infrastructures that can be used to collect
and temporarily store transmitted data via the LoRa protocol.
They are based on Free and Open Source technologies which
better align with the interests and goals of our project. Over the
course of our project, we have doubled the number of LoRa
gateways in Charlottesville from 5 to 10, all housed in private
homes around Charlottesville. We are the first members of the
Charlottesville community and UVA to create a community-
driven application for this network.

With the transport protocol in place, we designed an air
quality (AQ) sensor kit. We have included functionality for
sensing temperature, humidity, carbon dioxide (CO2), and
particulate matter (PM) 2.5 and 10 variants. Our sensors utilize
the LoRa network and are battery-powered. We have built
and distributed 10 sensor kits around Charlottesville with
help from a group of local volunteers. To provide open data
access, we have utilized Grafana to visualize our temporal
data and a mapping software provided by members of the
TTN community to visualize our spatial data. Grafana is an
Open Source analytics and monitoring solution that allows us
to easily visualize time-series data from our sensors. Access
to our online resources can be found in the linked appendix.
To demonstrate the public utility of our sensor network, we
have analyzed and visualized data from before and after March
11, the day that UVA announced that it would switch to
online classes. Our visuals provide a detailed view of how
emissions have changed throughout Charlottesville in this
period. In what follows, we will discuss the literature on the
topic of community-driven environmental monitoring, present
our methods, data analytics, and conclusions with suggestions
for future work.

II. LITERATURE REVIEW

As the world became more industrialized, high population
density in urban centers and fossil fuel emissions resulted
in rising levels of pollutants in the air. Research has shown



that not only does polluted air affect respiratory health, but
links have been found to increases in both atrial fibrillation
[4] and ischemic stroke [5]. The World Health Organization
(WHO) reports that 4.2 million deaths globally per year are
attributed to outdoor air pollution alone and that over 90%
of the population living in cities is exposed to particulate
matter in concentrations exceeding the WHO guidelines [6]-
[8]. In terms of economic damages, research has been able to
quantify the negative effects of poor air quality in the hundreds
of billions of dollars [9]. In addition to its impact on global
warming, even moderate levels of CO2 have an impact on
cognitive performance, thus presenting us with an important
opportunity and responsibility to change our behavior [10].

Traditional approaches to monitoring air quality have been
centralized by governmental agencies which uses highly ex-
pensive and accurate tools with low spatial density, generally
one sensor per county [11]. One alternative to this method is
satellite assessment which is able to achieve global coverage,
but runs into several geospatial issues leading to low temporal
resolution and problems taking measurements with cloud or
vegetation cover [12]. To gain the advantages of both spatial
and temporal resolution, smaller and cheaper ground sensors
have become the new frontier in air quality sensing [13].

The “community science” approach has become more fea-
sible than ever in recent years due to the release of low-cost
and high-precision sensors which can consistently measure
particulate matter among other pollutants. While these sensors
should still be properly calibrated with reference instruments
before having their accuracy assumed, their performance is
a marked improvement over past generations, especially con-
sidering their price, size, and power consumption as attested
by laboratory tests by independent researchers and the EPA
[14], [15]. Along with these new sensors have come new
proven transmission technologies such as LoRaWAN, enabling
scientists and citizens to not just collect data but also reliably
transport it to high performance computing infrastructures for
processing [16].

Along with data collection, significant work has been done
by independent researchers to determine proper techniques for
calibrating low-cost sensors and detecting anomalies. Many
of these approaches compare sensor readings from low-cost
sensors to government-owned stations in the area, attempting
to train models to calibrate sensors over time, space, or both
[11], [17]. Several of these projects have shown success when
using random forest models to calibrate their sensors and
reinforce the improvements to accuracy possible when sensing
multiple air quality metrics simultaneously [18]. Other projects
report success in the application of LSTM Neural Network
approaches to calibrate their sensors [19]-[21].

Many community-driven air quality sensing projects have
sprouted up around the world utilizing these new technolo-
gies to implement real-world data collection and analysis
schemes. Some examples include Air Quality Egg, Safecast
Air, Publiclab, Smart Citizen, AirCasting, HackAIR, Luft-
daten, PurpleAir, the Air Quality Data Commons, and more.
These projects have pioneered but also encountered difficult

challenges in community-led environmental sensing. Based
on their experiences, we sought to expand their coverage
by advancing the technical and social aspects of community-
driven environmental monitoring in our community.

Potential use-cases for our environmental data are countless
given the variety of sensors that are available today in addition
to the number of researchers and volunteers around the world
who are invested in this approach. Researchers have used
wireless sensor networks to predict the spread of wildfires
[22], [23], while others have focused on their use-cases in
urban settings. Our contribution to Charlottesville has been
in laying the groundwork for this sensor network so that local
researchers and citizens may have the data they need to address
air quality issues going forward.

1II. METHODOLOGY

One of our major goals was to implement a networking in-
frastructure to facilitate the proliferation of community-driven,
low-power sensor networks going forward. We have been
successful in not only doubling the number of LoRa gateways
throughout the city, but also in spreading knowledge about
LoRa and its possibilities in the community and university,
gathering ideas from multiple stakeholders in local organiza-
tions to spur collaborative projects with open technologies.

We began this process by holding events and meetings with
both university and community members, where we explained
details of the technology, presented similar projects around the
world, and described the specifics of our project. We included
members of UVA Schools of Data Science, Engineering,
Architecture, Health, and the College of Arts & Sciences in
our process of consultation. We also made an effort to include
community members from local environmental groups C3 &
LEAP, the Charlottesville city administration, and our sponsor
Smart Cville. We facilitated discussion about the possibilities
of this technology in our community, kept track of suggestions
for future projects, and gathered a list of volunteers to host
our prototype sensor kits. We filtered through the volunteers,
choosing individuals who were located in major intersections
and roads, but also distributed around the city to maximize our
spread across Charlottesville. We gave both a LoRa gateway
and a sensor kit to these individuals, however, future projects
may no longer need to provide LoRa gateways along with their
sensor kits once the city achieves sufficient network coverage.

Significant work went into designing and implementing all
parts of our sensor Kkits, starting with the constraints that our
sensor kits should take relatively high accuracy readings, have
relatively long battery life, and have relatively low cost.

With these goals in mind, we began choosing electronic
componentry. Our choice for the first prototype was to test
the Adafruit Feather MO with LoRa breakout (MO0) as our mi-
crocontroller (MCU). This specific board allows us to supply
both 5 volt (V) and 3.3V out while simultaneously enabling
us to send LoRa packets easily using on-board hardware. We
decided to use the Plantower PMS7003 PM sensor as it was
the smallest, lowest-cost, and highest accuracy pre-calibrated
sensor that we could find on the market. We chose to use the
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Fig. 1. LoRa Gateway Distribution (1km radius)

Sensirion SCD30 Nondispersive Infrared (NDIR) CO2 sensor
considering its on-board temperature and humidity sensing,
auto-calibration, and high accuracy [24].

We did not perform collocation tests for our sensors, but
based our decisions on laboratory tests that have been con-
ducted by the US Environmental Protection Agency as well
as independent researchers who have shown that the PMS7003
factory calibration demonstrates low intramodel variability and
strong correlation with reference instruments (a coefficient
of variation less than 10% between units) [14], [15], [25].
Both PM and CO2 sensors are reported to be sensitive to
environmental conditions, such as humidity and temperature,
so we use these metrics to validate data points, but also report
these metrics with our data set for future studies [26], [27].

Placement was also considered by our group, that is, how to
better geographically situate our sensors. We sought to deploy
our sensors in places of high urban traffic, so as to get an
upper-bound on the air quality in the greater Charlottesville
area. Once specific geographic locations were chosen, we
ensured that our sensors were deployed in covered areas
outdoors, would receive sunlight during some portion of the
day to increase the lifespan of the device through energy
harvesting, and were placed at a height between 1m and 10m
to ensure that our readings reflected concentrations to which
humans might be exposed.

Protecting our sensors from weather damage was of partic-
ular focus when designing the housing itself. For our pilot
prototype, we modified plastic containers with 3D-printed
mounts for our sensors with silicone coating (for the circuitry)
and sealant. For our first hardware revision, we adopted a fully
3D-printed housing utilizing o-rings for weather sealing. Our
pilot prototype used miniature breadboards with jumper wires
to connect our components, however, we have designed a PCB
to use in our first revision that simplified and improved the
reliability of the setup greatly. The next steps in improving
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Fig. 2. Data Flow Diagram

the usability and reproducibility of our setup are provided in
the future works section. Pictures of our assembly are provided
in our digital appendix.

The software for this project consists of a single C script
written in collaboration by us and our mentor. We utilize
several community libraries to interface with our sensors and
the radio module on our MCU. The Free and Open Source
distribution of Arduino libraries significantly increased the
speed with which we could prototype our design.

The revisions of both our hardware and software are avail-
able in our digital appendix. As illustrated in Figure 2, our
data begins its life-cycle in the hardware sensors themselves,
the PMS7003 and the SCD30. From there, it is formatted and
transmitted to the embedded MCU. It is then transmitted via
an on-board LoRaWAN radio module to a LoRa Gateway that
receives the encoded packets, decodes them, and sends them
to a Message Queuing Telemetry Transport (MQTT) broker.
An instance of InfluxDB that is privately hosted on our server
is subscribed to this MQTT broker and then pulls the data and
stores it permanently. Our data visualization engine, Grafana,
then pulls data from InfluxDB using a Secure Socket Layer
(SSL) API call and updates our public time-series visualization
dashboards. We also use an alternative visualization tool, made
by the TTN community, that subscribes directly to our MQTT
broker and generates a public real-time map of our data. To
perform more complex analysis, we use a Python library to
make SSL API calls to our InfluxDB instance, clean and
aggregate our data, and then push the data to R for spatial
analysis.

IV. ANALYSIS

When beginning analysis on data from this kind of volunteer
sensor network, the first thing to think about are the potential
sources of noise in the dataset. We have sensors that only
behave correctly under certain conditions, that are powered
by unstable power sources, and that are not in certified enclo-
sures. We must first remove erroneous data points caused by
these issues before we move onto identifying truly anomalous
events. We outlined realistic ranges for each of our metrics
by looking at the data already gathered and reading up on
the climate of Charlottesville. We then remove data points
outside of these ranges and remove sets of data points that are



Metric Minimum | Maximum
CO2 (ppm) 0 5000

PM 2.5 (ug/m?) | 0 350

PM 10 (ug/m?) | O 350
Temperature (C) | O 41
Humidity (%) 0 100

Fig. 3. Acceptable Metric Bounds

perfectly linearly correlated in sequence, effectively removing
long periods of constant values or linearly interpolated values.
24.439% of our original data points were removed through just
these two simple data cleaning techniques. 49.58% of our
readings had at least one missing value in them. As of April
15, 2020, we have recorded 46,309 sensor readings.

We then performed anomaly detection on the CO2, PM 2.5,
Temperature, and Humidity features of our dataset using an
isolation forest with an expected contamination of 1%. This
was an exploratory analysis that led us to observe that the
distribution of anomalies per-sensor kit was not uniform. We
found that our 8th sensor kit was generating nearly twice
as many anomalies as the next highest kit, spurring us to
investigate the cause. We found that this sensor kit was placed
very close to the railroad that runs through Charlottesville,
indicating that the anomalies could be explained by trains
periodically passing through. Sensor anomaly rates should
approach their expected value over time due to the law of large
numbers, meaning that this anomaly distribution will become
more reliable the longer the sensors exist in the field. More
figures detailing the results of our data cleaning and anomaly
detection can be found in our digital appendix.

Plotting the correlation between the readings of our sensors
for our three air quality metrics: CO2, PM 2.5, and PM 10
showed R? values of below 0.02. This showcases the massive
amount of spatial density necessary to capture all of the air
quality information in an urban setting. Further research must
be done to determine the necessary sensor density to capture
all of the meaningful air quality information in urban settings
and, furthermore, to determine the most effective means to
interpolate between sensor readings in scenarios with less than
sufficient sensor coverage.

To generate a continuous map of air quality throughout the
area in which we performed our study, we chose ordinary
kriging as our interpolation method. Ordinary kriging is a form
of Gaussian regression which gives weights to the values of
the nearest spatial points (the sensors) and then interpolates
to the entire raster. Using the formula 2(zg) = Zi\;l Aiz(x;),
where N is the number of sensors, z(z;) is the recorded value
at the " sensor (mean of the recorded values over time in
our case), and \; are the weights assigned to each sensor that
are determined by geographic straight-line distance and spatial
auto-correlation, Z predictions are calculated for each pixel xg
in the entire fine raster by summing across all the weighted
terms. As this model is unbiased, the weights sum to one [28],
[29]. From this, heatmaps can be visualized for the predictions

Fig. 4. Percent Change in Mean CO2 levels (ppm) since the March 11, 2020
announcement of the cancellation of in-person classes at UVA. The values
shown on the map were interpolated using ordinary kriging. Orange diamonds
represent sensor Kits.

of each of the metrics. It must be noted however, that since
kriging is a method of interpolation, and the coverage of
sensors around the city is still fairly sparse, that these maps
should not be currently used to inform Charlottesville residents
of their air quality but, instead, be used as a proof-of-concept
for when the sensors eventually cover a sizeable portion of the
city in the future.

We were interested to see if we could use our network of
sensors to see if there were changes in the air quality before
and after March 11, 2020, the day that UVA cancelled in-
person classes. We believe, given the UVA student body at
the time made up about one third of the total Charlottesville
population, that this day would be a reasonable estimate of
the time that the greater Charlottesville community began
“social distancing”. As mentioned in the previous section,
these heatmaps stem from collected data that is, at the moment,
too sparse to make any confident statistical claims. However,
as another proof-of-concept for when the network of sensors
expands and more data becomes available, an example of the
resultant heatmaps from kriging are shown in Fig. 3. While
we are hopeful to have exponentially more data in the coming
months and beyond, this map shows yet another potential
application for disseminating meaningful information back to
the community from the open data that has been collected.

V. DISCUSSION AND FUTURE WORK

Many of the decisions during the design and construction
of our first prototype kits were made with relatively strict time
and budget constraints. As such, our battery life is much lower
than would be ideal, our first prototype kits are completely
insulated, and our cost is higher than we would have liked



for mass adoption. In the second phase of this project, work
is already being done to solve all of these issues. A new
dedicated MCU board is being designed with battery life as a
top concern and new sensors are being evaluated for use. A
fully 3D-printed enclosure is being re-designed to make our
kits much easier and cheaper to build. These modifications
will, in tandem, significantly reduce the cost of our sensor
kits going forward, thus making them more accessible for
community members and providing a better infrastructure
from which to build future community sensing projects in
Charlottesville and UVA.

Past projects in the community sensing space have used a
variety of communication protocols to implement their data
pipeline. Our experience with LoRa was relatively seamless,
however, it was also expensive and did not perform as well in
dense, urban areas. The LoRa gateways used for this project
advertise a connection radius of 10km with line-of-sight, but
we experienced a radius closer to 1 km, reflected in the radius
chosen for Figure 1. TTN gateways cost around $200 dollars
each, forcing us to rely on outside funding from the UVA Link
Lab in order to increase our network coverage. Other projects
at UVA have had significant difficulty in working with LoRa
devices that are not *plug-and-play’ as the TTN ones are. With
all of this taken into account, we can say confidently that LoRa
is the best low-power wireless sensing networking technology
that we have used, but that future researchers should evaluate
alternatives that can solve these issues of high expense and
over-promised connection radius.

While most data scientists rely on the Open Source commu-
nity for their ongoing support of Python and R, our project has
attempted to go all-in on the ’open’ approach. The software
running on our boards, the hardware designs and wiring dia-
grams, the Jupyter Notebooks that we use to analyze our data,
and the data itself, among other resources, are all available
using open licenses. TTN is an open network, the MCU that
we chose has open schematics, even the company that we
have chosen to print our PCBs, OSH Park, is a proponent of
the Open Hardware movement. In our experience, we see the
Open Source software, hardware, and data communities as a
perfect fit for projects existing at the crossroads between the
academic and the "hacker’ communities in our university and
the city that surrounds it.

The goals set forth at the beginning of our project were to
increase the size of the LoRa network in Charlottesville, design
and distribute sensor kits that utilize that network, provide
open access to our collected data, and demonstrate the utility
of our data through analysis. We were successful in all of our
initial goals, but there is still much work to be done. There is
more insight that can be gained as the quantity of sensors and
collected data increases. One visualization that can be created
from this is an animated collection of heatmaps. Similar to how
weather stations have historical and future animated weather
radars, showing trends in the air quality with respect to time
can be a way for Charlottesville residents to intuitively get a
sense of the relative air quality at a given time.

From a methodological perspective, implementing an array

of anomaly detection methods for our raw data might help
improve the accuracy of correctly identified data points. While
we used the isolation forest method to detect anomalies in
our data, there are a variety of alternative methods that
may result in better performance, especially in aggregate. Of
particular interest are more recent developments in neural
network architectures, such as LSTMs [21].

Healthcare is another potential field where air quality data
can be of great use. We have received Institutional Review
Board approval to have access to the health records of all
respiratory illness admits to the UVA Health System starting
in February 2020. We will also be granted access to the patient
home locations (general census tracts to protect privacy), and
date of admission. Future work can utilize this data for a time-
series analysis, determining if there are any density-adjusted
correlations between air quality and the number of hospital
admissions based on location within the city, akin to other
related research projects from around the world [30], [31].

With the unprecedented actions taken by the local, state,
and federal government regarding the COVID-19 pandemic,
analysis of the air quality data before and after the imple-
mentation of “social distancing”, as well as after the crisis
comes to an effective conclusion could be enlightening. By
analyzing which areas of the city show significant decreases
in air pollutants after the majority of the population stays
mostly housebound, it may provide insight as to which areas
the Charlottesville policymakers should focus their efforts on
combating the harmful human effects on the quality of the
air. Similarly, if there are air pollutant spikes after “social
distancing” has concluded, it may provide even more evidence
for the locations of highest human influence. Experimental
research can also be advanced on the role that PM plays in
the dispersion of the virus, as it is known in the environmental
science community that PM is a carrier for both inorganic and
organic matter [32]-[34].

We are hopeful that, in addition to further expanding our
infrastructure across the city of Charlottesville, our research
will inspire the inception and continuation of other citizen
science air quality sensor projects across the state, country,
and world. As we discovered during the course of our project,
the government mandated air quality sensing is sparse both
spatially and temporally, and furthermore, not easily obtain-
able by the public. Expanding the reach of a network of air
quality sensors fueled by open data can bring huge benefits in
terms of environmental public engagement, especially in the
age of climate change.
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APPENDIX

Our appendix can be accessed online at:
thejimster82.github.io/CvilleAQ
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